RE 91 175/06.98

Replaces: 11.95

Fixed displacement motor A10FP

for open and closed circuit applications

Size 18 Baureihe 52 Nominal pressure 280 bar Peak pressure 350 bar

A10FP

1

2

5

6

7

Contents

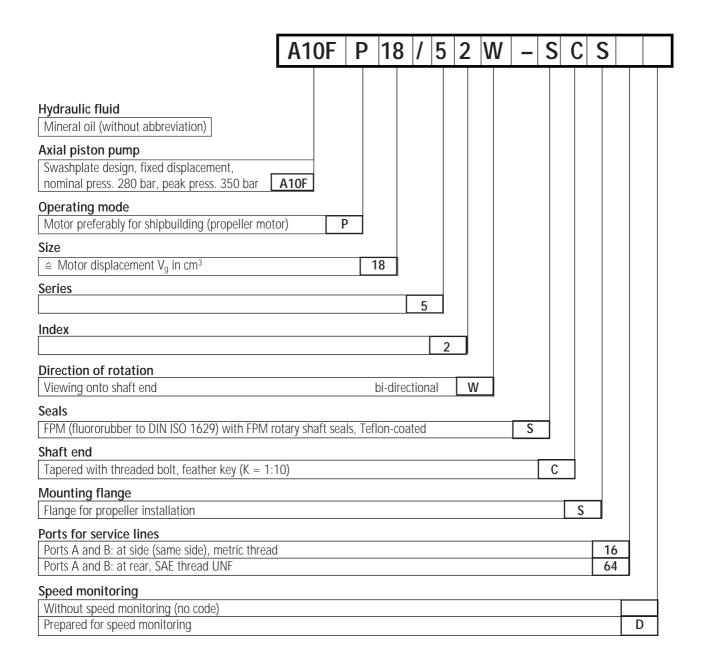
eatures
Ordering code / standard range
lydraulic fluid, filtration
echnical data
Jnit sizes, lateral ports
Jnit sizes, rear ports
Series A10, range of motors
Series A10, range of pumps

Features

- Fixed displacement motor, axial piston in swashplate design for hydrostatic transmissions in open and closed circuit applications.
- Output speed directly proportional to the inlet flow rate and inversely proportional to the motor displacement.
 - Output torque increases with the pressure gradient between high and low-pressure sides.
 - For mobile and stationary use.
 - Compact, slim design.
 - Long service life.
 - High output speed.
 - High permissible axial and radial forces on the output shaft.
 - Tried-and-tested A10 power unit technology.
 - Good power-to-weight ratio.
 - Optionally prepared for speed monitoring.

- Further information:

Fixed displacement motor A10FM/E Size 23 - 63


RE 91 172

A10FP **1**/8

Ordering code / standard range

Technical data

Hydraulic fluid

Please refer to our catalogue sheets RE 90220 (mineral oil) and RE 90221 (environmentally friendly hydraulic fluids) for detailed information on selecting hydraulic fluids and on service conditions before the project planning stage.

Operation with environmentally friendly hydraulic fluids may result in modifications to the technical specifications; please consult us if necessary (the hydraulic fluid used must be clearly stated in the order).

Service viscosity range

We recommend selecting the service viscosity (at operating temperature) in the range of

$$v_{opt} = opt.$$
 service viscosity 16...36 mm²/s

for optimum efficiency and useful life, referred to the circulation temperature (closed circuit).

Limiting viscosity range

Service limits are set at the following values:

 $v_{min} = 10 \text{ mm}^2/\text{s}$

briefly at max. permissible leakage oil temperature of $t_{max} = 90$ °C.

 $v_{\text{max}} = 1000 \text{ mm}^2/\text{s}$

briefly on cold start ($t_{min} = -25$ °C).

Temperature range (see selection chart)

 $t_{min} = -25$ °C

 $t_{max} = 90^{\circ}C$

Comment on selecting hydraulic fluid

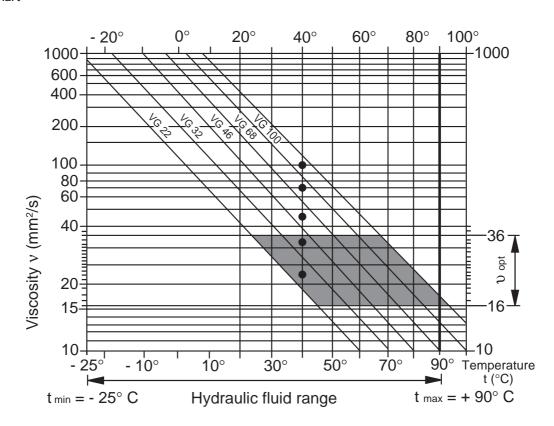
The service temperature in the circuit (closed circuit) must be known as a function of the ambient temperature in order to choose the correct hydraulic fluid.

The hydraulic fluid must be selected in such a way that service viscosity lies within the optimum range (ν_{opt}) for the operating temperature span, see shaded area in the chart. We recommend selecting the next higher viscosity class in each case.

Example: A service temperature of 60 °C is established in the circuit at an ambient temperature of X °C. Given the optimum service viscosity range ($v_{opt'}$, shaded area), this will require viscosity classes VG 46 or VG 68; class to select: VG 68.

Note: The leakage oil temperature depends on the pressure and speed and is always higher than the temperature in circulation. However, temperature must not exceed 90 °C anywhere in the system.

Please contact us if it is not possible to meet the above conditions due to extreme service parameters or high ambient temperature.


Hydraulic fluid filtering

To ensure operational reliability, the service fluid must conform to at least purity class

9 to NAS 1638 18/15 to ISO/DIS 4406.

Please consult the manufacturer if the above classes cannot be maintained.

Selection chart

Technical data

Service pressure range

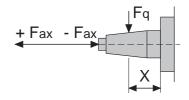
Pressure at port A or B Nominal pressure p_N 280 bar Peak pressure p_{max} 350 bar (pressures to DIN 24312)

Leakage fluid pressure

Maximum permissible leakage fluid pressure at ports L and	1 L ₁	
P _{abs max} —	2 bar	abs.

Installed position

Any. The motor housing must be filled with hydraulic fluid when starting up and during operation. The leakage fluid line must be routed so that the housing is not drained when the motor stops, i.e. the end of the line must enter the tank below the minimum oil level.


Direction of rotation

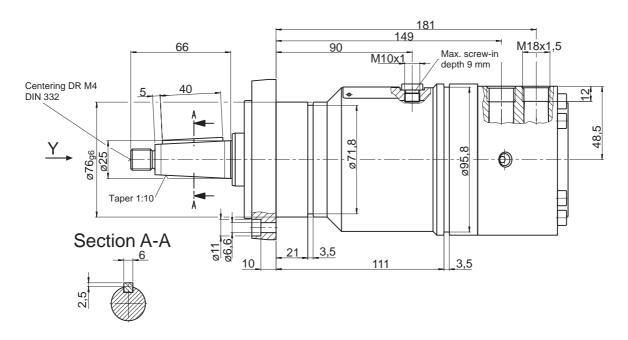
Pressure in A = Right-hand rotation Pressure in B = Left-hand rotation

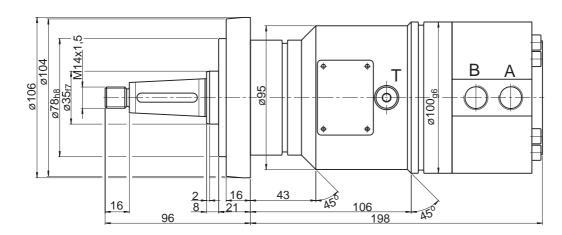
Table of values (theoretical values, ignoring n_m, and n_m; values rounded)

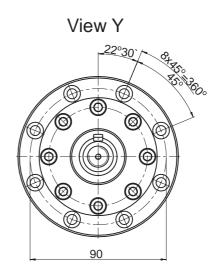
Size					18	
Motor displacement			V_{gmax}	cm ³	18	
Max. speed			n _{max}	rpm	4200	
Max. inlet flow rate	at n _{max}		q _{v max}	L/min	75.6	
Max. power	at n _{max}	$\Delta p = 280 \text{ bar}$	P_{max}	kW	35.3	
Max. torque	at V _{g max}	$\Delta p = 280 \text{ bar}$	T _{max}	Nm	80	
Mass moment of inertia (about the output shaft)			J	kgm²	0.00093	
Capacity, approx.				L	0.2	
Weight, approx.			m	kg	9	
Permissible load on output shaft, max. perm. axial force			F _{ax max}	N	2300	
Max. perm. lateral force ¹)			F _{q max}	N	350	
Force applied at a distance of			X	mm	40	
Max. water depth when used as propeller motor ²)				m	300	

¹⁾ Please contact us if higher lateral forces are encountered

Calculating size


Inlet flow rate
$$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 in L/min $V_g = \frac{\text{geometric motor displacement per revolution in cm}^3}{\Delta p} = \frac{1,59 \cdot V_g \cdot \Delta p \cdot \eta_{mh}}{100}$ in Nm $n = \text{speed in rpm}$ output power $P = \frac{T \cdot n}{9549} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600}$ in kW $n = \frac{q_v \cdot 1000 \cdot \eta_v}{V_g}$ in rpm $n = \frac{q_v \cdot 1000 \cdot \eta_v}{V_g}$ in rpm


²) Please contact us if greater depths are encountered

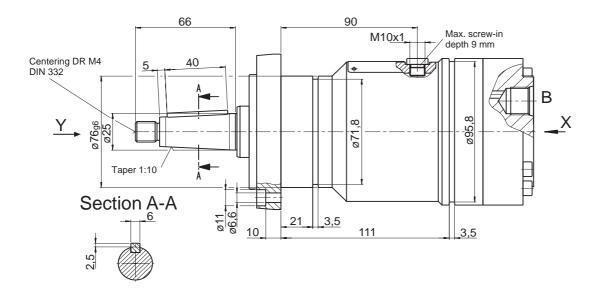

Before finalising your design, please request certified assembly drawing.

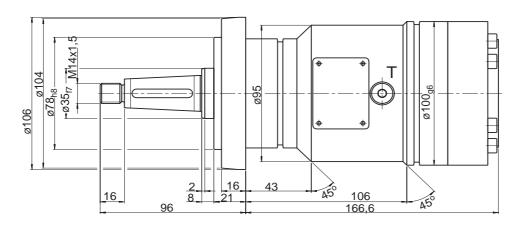
A10FP 18/52W-SCS16

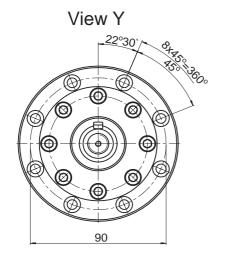
Subplate 16

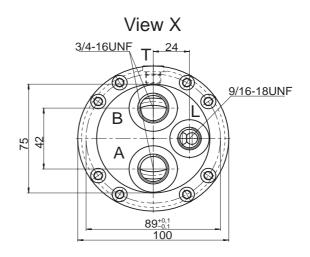
Ports

A, B Pressure ports M18 x 1.5


T Oil filler port / venting port M10x1, plugged


Unit dimensions


Before finalising your design, please request certified assembly drawing.


A10FP 18/52W-SCS64

Subplate 64

Ports

A, B Pressure ports 3/4-16UNF

L Leakage oil port 9/16-18UNF

T Oil filler port / venting port M10x1, plugged

Other motors in series A10

Fixed displacement motor A₁₀FM

Series 52

Fixed displacement plug-in motor A₁₀FE

Size:

23 cm³ 28 cm³ 37 cm³ 45 cm^3 63 cm^3

Series 52

Dual displacement motor

A10VM

Series 52

Dual displacement plug-in motor A10VE Series 52

Size:

28 cm³ 45 cm^3 60 cm³

(in preparation)

Dual displacement motor A10VEC Series 52

Size:

7/8

 45 cm^3 80 cm^3 60 cm³

The A10 series of pumps

Variable displacement pump A10VO

RE 92701

Series 31

Variable displacement pump A10VSO

RE 92711

Series 31

Size:

28 cm³ 45 cm^3 71 cm^3 100 cm³ 140 cm³

Control devices:

Two-point control, directly controlled DG

DR Pressure controller

DFR Pressure and flow controller **DFLR** Pressure, flow and power controller **DFSR** Pressure, flow and total power controller

FHD Flow controller, dependent on pilot pressure, with

pressure control

FE1 Flow controller, electronic

DFE1 Pressure and flow controller, electronic

Speed regulation with secondary control (RE 92715) DS

RE 92712

Variable displacement pump A10VSO Series 31

Size:

18 cm³

Control devices:

Pressure controller DR

DFR Pressure and flow controller

DFR1 Pressure and flow controller, channel X plugged

DFE1 Pressure and flow controller, electronic

RE 92713

Variable displacement pump

A10VSO

Series 52

Size:

10 cm³

Control devices:

DR Pressure controller

DRG Pressure controller, remote-controlled

DFR1 Pressure and flow controller, channel X plugged

RE 92703

Variable displacement pump A₁₀VO

Series 52

Size:

28 cm3 45 cm³ 60 cm³

Control devices:

Pressure controller DR

DFR Pressure and flow controller

Compact unit **A10CO** Series 52

RE 92730

Size:

45 cm³

Control devices:

DR Pressure controller

DFR Pressure and flow controller

Brueninghaus Hydromatik GmbH

Plant Horb

An den Kelterwiesen 14 • D-72160 Horb

Telefon +49 (0) 74 51 / 92-0 Telefax +49 (0) 74 51 / 82 21 The data in this document is quoted solely for purposes of product description and should not be considered to constitute guaranteed and legally binding properties.