MANNESMANN REXROTH

AA4VSE Plug-in dual displacement motor

Series 10

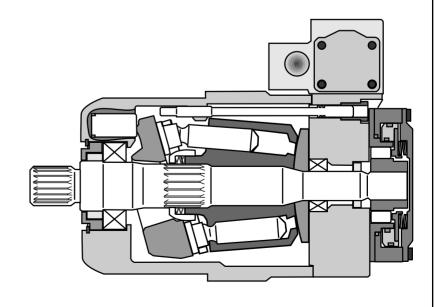
Axial piston swashplate design, SAE model

RE 91808/09.90

Brueninghaus Hydromatik

Size 250 Nominal pressure 350 bar Peak pressure 400 bar

High pressure range


The AA4VSE plug-in dual displacement motor is an axial piston motor in swashplate design for hydrostatic drives in open and closed circuit applications.

The motor is suitable for use in mobile and industrial environments.

The motor speed is proportional to the input flow and inversely proportionate to the displacement.

A hydraulic control 3/2-way directional valve for controlling $V_{q \text{ max}}$ and $V_{q \text{ min}}$ is integrated in the housing.

- A4FSM base transmission system
- Sturdy bearings to ensure long service life
- High permissible motor speed
- Optimum specific weight compact dimensions
- Mechanical and hydraulic connections to SAE specifications
- Low noise levels
- Control range 1:2.5
- Integral spool valve
- Special 4-hole flange
- Holding brake and brake valve attachment facility

Ordering codes		1	I			I					
Ordering codes	AA4VS	E	250	HZ	/ 10	W	-	S	М		
Hydraulic fluid											
Mineral oil (no abbreviated code)											
Axial piston motor											
Swashplate design, adjustable Nominal pressure 350 bar, peak pressure 400	AA4VS										
bar, SAE model, for industrial applications											
Made of an aretical											
Mode of operation Plug-in motor	E										
. log iii iiiotoi		_									
Size											
Displacement V _{g max} (cm ³)		:	250								
Control and setting											
2-point control, hydraulic HZ				ΗZ							
2-point control, hydraulic 112				12							
Series											
				10							
Rotation											
Viewed on shaft end	variable			w	1						
Viewed on Shart Cha	variable										
Min. displacement					_						
Min. displacement setting steplessly variable	$V_{g min} (cm^3)$	= [100 to	200							
Seals					-						
NBR (Nitrile rubber to DIN ISO 1629) FPM (Fluoro rubber to DIN ISO 1629)				P	+						
TTW (Tuoto tubbet to bire toe 1025)					_						
Shaft end											
SAE splined profile				S				_			
Mounting flange											
Special 4 hole flange				М							
•					_						
Actuator ports Port A/B on side (same side),SAE, UNC	mounting throo	٨			_]	
Port A/B on side (same side),SAE, UNC Port A/B on side (same side) for mounting			ve	60	+						
Port A/B on side (same side) for mountii	ng		-	70	╡						
mechanical brak Port A/B on side (same side) for mountil	e	שמעום	ve and		_						
mechanical brak		ı val	ve allu	71	_						
Brake mounting											
Without mechanical brake				N00							
With built-on mechanical brake				B01]						
Valve											
				_	1						
Without valves				0							

Technical data

Hydraulic fluid

Mineral oil

For detailed information on the selection of mineral oil based hydraulic fluids and the conditions in which they are used please refer to our data sheet RE 90 220 prior to undertaking project

Operating viscosity range

We recommend the selection of operating viscosity (at operating temperature) in the range of

$$v_{opt}$$
 = Operating viscosity 16...36 mm²/s

in relation to circuit temperature (closed circuit).

Limit viscosity range

The following values are applicable for limit operation conditions:

 $v_{min} = 10 \text{ mm}^2/\text{s}$ short-term at max. permitted drain oil temperature of 90°C.

 $v_{max} = 1000 \text{ mm}^2/\text{s}$ short-term for cold start

Temperature range (cf: selection diagram)

$$t_{min} = -25^{\circ} C$$
$$t_{max} = 90^{\circ} C$$

Notes on selection of hydraulic fluid

In order to select the correct hydraulic fluid it is necessary to know the operating temperature (closed circuit) in relation to the ambient temperature.

The hydraulic fluid selected should be such that, within the operating temperature range the operating viscosity lies within the optimum range (v_{opt}) (see selection diagram, shaded area). We recommend that the higher viscosity grade be selected in each case.

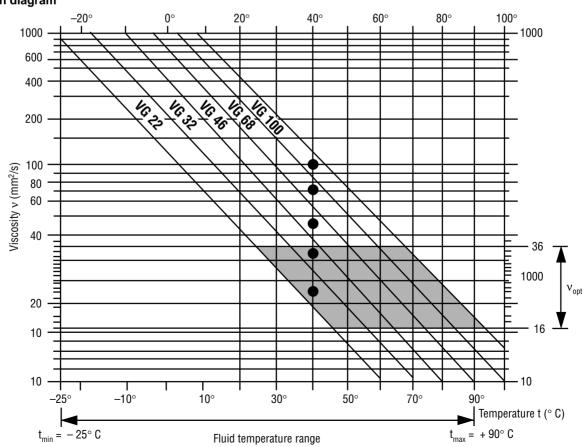
Example:

At an ambient temperature of X°C the operating temperature in the circuit is $60^{\circ}\,\text{C}$. In the optimum operating viscosity range $(v_{opt}; shaded area)$ this corresponds to viscosity grades VG 46 or VG 68; VG 68 should be selected.

Please note:

The drain oil temperature is influenced by pressure and speed and is always higher than the temperature in the circuit. It must never be allowed to exceed 90°C.

If the above conditions cannot be adhered to because of extreme operational parameters or high ambient temperatures please consult us.


Fluid filtration

In order to ensure reliable functioning the minimum class of cleanliness that should be applied is class 9 (NAS 1638) or class 6 (SAE, ASTM, AIA).

This can be achieved by using filter type ... D020... (see RE 31278) which gives a filtration quotient of:

$$\beta_{20} \ge 100$$

Selection diagram

AA4VSE Plug-in dual displacement motor, series 10

Technical data

Operating pressure range

Pressure at port A or B

Nominal pressure p_N ______ 350 bar

Peak pressure p_{max} ______ 400 bar

(Pressure information to DIN 24312)

Installation position

Optional. The housing must be filled with fluid at start up and during operation.

Rotation

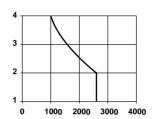
Pressure in port A = clockwise rotation Pressure in port B = anti-clockwise rotation

Suitable gear units for AA4VSE

e.g. Lohmann + Stolterfoht

Displacement

Both the maximum and minimum displacement are set at the factory in compliance with the order codes (see page 2).


Drain oil pressure

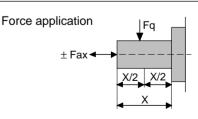
Max. drain oil pressure (case pressure)

p _{abs max} ______ 4 bar

The permitted pressure is, however, dependent on the speed and the sealing material selected.

"NBR" shaft sealing ring

"FPM" shaft sealing ring


When using "FPM" shaft sealing rings it is possible, in contrast to the NBR sealing rings, to increase the permitted pressure to 50 % whilst maintaining the same speed.

These values are for guidance only.

Under exceptional operating conditions a reduction may become necessary.

Table of values (theoretical values, without taking into account η_{mb} and η_{nc} ; values rounded off)

Size = displacement setting		V _{g max}		250	
		$V_{g min}$		100	
Displacement		V _g	cm ³	100	250
Speed		n _{max}	rpm	2600	2000
Max. input flow	at n _{max}	Q _{max}	L/min	260	500
Max. output power (Δp=350 bar)	at n _{max}	P _{max}	kW	152	292
Max. torque (Δp=350 bar)		T _{max}	Nm	556	1391
Moment of inertia about output axis		J	kgm²	00959	0,0959
Capacity			L	7	7
Weight approx.		m	kg	125	125
Permitted load on output shaft					
Permitted axial force at housing pressure p_{max} 1 bar abs.		±F _{ax max}	N	3000	3000
Permitted axial force at housing pressure p _{max} 4 bar abs.		+F _{ax max}	N	1850	1850
		-F ax max	N	4150	4150
Max. permitted radial force		F q max	N	4000	4000
Actual starting torque ($\Delta p=350$ bar) at n = 0 rpm			Nm	417	1127

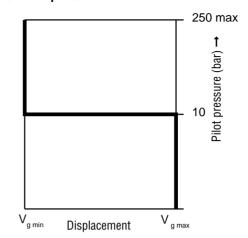
Determination of size

Input flow $Q = \frac{V_g \cdot n}{1000 \cdot \eta_v} \qquad \qquad \text{(L/min)} \qquad V_g = \text{geometr. displacement volume (cm³) per revolution}$ Output drive torque $M = \frac{1,59 \cdot V_g \cdot \Delta \, p \cdot \eta_{mh}}{100} \qquad \text{(Nm)} \qquad \frac{\Delta \, p}{n} = \text{Differential pressure (bar)}$ n = Speed (rpm) $\eta_v = \text{Volumetric efficiency}$

Output power $P = \frac{M \cdot n}{9549} = \frac{Q \cdot \Delta p \cdot \eta_t}{600}$ (kW) $\frac{\eta_{mh}}{\eta_t} = \text{Mechanical hydraulic efficiency}$ $\eta_t = \text{Overall working efficiency}$ $(\eta_t = \eta \cdot \eta_{mh})$

Hydraulic two-point control, HZ

Setting of displacement to $V_{g \text{ min}}$ or $V_{g \text{ max}}$ is achieved by connecting or disconnecting the pilot pressure to port X.

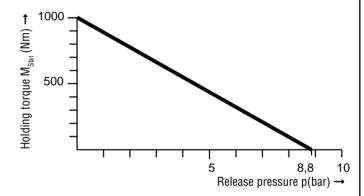

= setting at $V_{g max}$ Pilot pressure in X = 0 bar Pilot pressure in X ≥ 10 bar = setting at V_{q min}

Pilot pressure

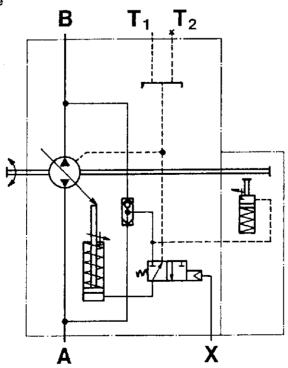
p _x	10 bar
p max in X	250 bar

The required control oil is taken from the high pressure side.

Control pressure - characteristic curve



Mechanical holding brake, B01


The mechanical holding brake can be built-on as required cf: ordering code, model B01.

This acts as a parking brake and is automatically activated when the operating pressure (pre-set via the integrated spring package) is not reached. As soon as operating pressure in excess of the spring force has built up again the mechanical parking brake is released.

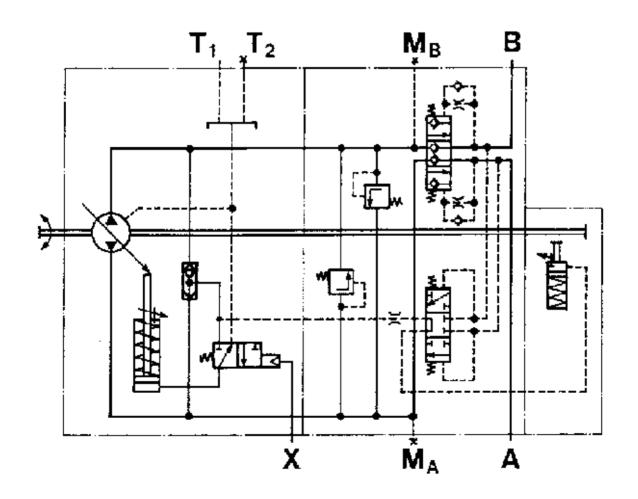
Characteristic curve - holding torque

HZ model with holding brake

AA4VSE Plug-in dual displacement motor, series 10

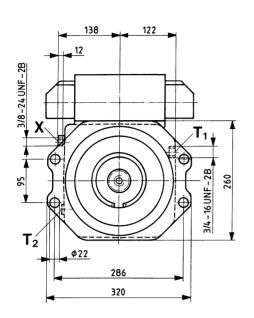
Motion control valve with pressure relief valve, 8

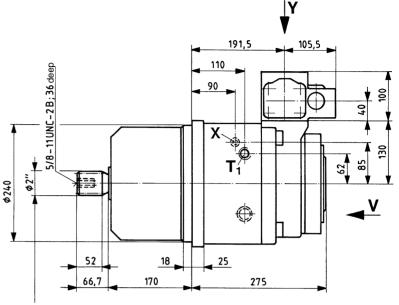
A motion control valve can be built on as required, cf: ordering code, model 8.

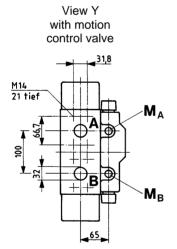

Motion control valves prevent cavitation of hydraulic motors operated in open circuit during downhill travel or when decelerating the vehicle e.g. in the track drive of a mobile excavator. Cavitation of hydraulic motors occurs as soon as the mechanically imposed speed exceeds the speed at which the motor would rotate due to the flow of hydraulic fluid.

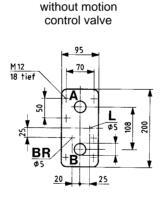
Motion control valves do not replace vehicle brakes.

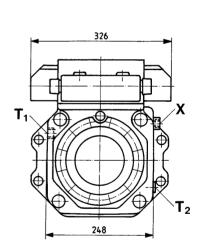
In the neutral position of the pressure spool the motor ports are blocked with the exception of a residual opening. This residual opening gives rise to a gentle deceleration of the motor.


Pressure relief valves protect the hydraulic motor against overpressure. The given pressure values are set in accordance with information given by the customer.


HZ model with holding brake and Motion control valve


Unit dimensions


HZ hydraulic 2-point control, shown with B01 mechanical holding brake and and motion control valve 8



2" spline length; 30° angle of mesh; 15 teeth; 8/16 pitch; flat root; side fit; tolerance classification 5; ANSI B 92.1a-1976

View Y

View V

A,B Pressure port SAE 1 1/4", high pressure series

 T_1 case drain port 3/4 - 16 UNF - 2B

Bleed point and

 ${\sf T}_{\sf x}$ 7/8 - 14 UNF - 2B Oil drain, tank Pilot pressure port 3/8 - 24 UNF - 2B, 12 deep

Test port 9/16 - 18 UNF - 2B M_A, M_B