MANNESMANN REXROTH	Variable Displacement Double Pump A20VO Series 1, for open circuits	RE
	Axial piston - swashplate design, Back to back - design	93100/02.97
Brueninghaus Hydromatik	Sizes 60260 Nominal Pressure up to 350 bar Peak Pressure up to 400 bar	Preliminary issue
	Variable displacement pump with two axial p groups in swashplate design for use in open hydrostatic drives.	biston rotary circuit
	One suction port, two service line ports	
	Designed principally for use in mobile applic	ations.
	The pump operates under self-priming cond pressurisation or with charge pump (sizes 13	ition, with tank 30260).
	A wide variety of controls are available. Setting of the constant power control is poss external adjustments, even when the unit is	sible via operating.

The pump is available with a through drive to accept a gear pump or a second axial piston pump.

Output flow is proportional to drive speed and pump displacement and is steplessly variable between maximum and zero.

Variable Displacement Double Pump	A20VO													
Ordering Code				Γ	Δ2		0			′ 1	0		r) 24
Operating Fluid Mineral oil (no code)				Ľ										· [24]
Axial histon unit														
Variable displacement, swashpla (Back to back - design)	ate desigr	١		A2	20V									
Charge pump (impeller) 6	60 75	95	130	190	260									
without charge pump (no code)	• 0	•	0	-	_							1		
with charge pump		_	0	•	٠	L								
Mode of operation														
Double pump in open circuit						0)							
Size														
Displacement V _{g max} (cm ³) per	rotary gr	oup				60	75	95	130	190	260	1		
Control device						60	75	95	130	190	260			
Power control, with load limiting control with pressure cut-off and hydraulic stro	ol, hydaulic oke limiter,	overrio neg. c	de, neg ontrol,	jative c ∆p = 2	ontrol 5 bar	I _	0	•	0	•	•	LG1DH1		
Power control, with load limiting control with pressure cut-off, Cross-Sensing hydraulic stroke limiter, negative cor	bl, hydaulic g control htrol, $\Delta p =$	overrio 25 bar	de, neg r	ative c	ontrol	-	0	•	0	•	•	LG1DCH1		
Power control, with load limiting control, hydaulic override, negative with pressure cut-off and Cross-Sensing control			ative c	ontro	l _	0	•	0	•	•	LG1DC			
Power control, with load limiting control with Cross-Sensing control and Load	ol, hydaulic d-Sensing	overric contro	de, neg ol	ative c	ontrol	· -	0	•	0	•	•	LG1CS		
Electronic pressure, flow and power	control					•	-	-	-	-	-	EDP		
Series														
												1		
Index														
Direction of rotation												0		
viewed on shaft and									lockw	ico		P		
Newed on shart end									nti-clo	ckwise	.			
Soals											-			
NBR (nitril-caoutchouc) shaft se	al in FPM	1 (fluo	r-caoi	utchou	IC)							N		
Shoft and	/ · · · · · · · · · · · · · · · · ·	,			-1	~~~	75	05	400	400	000	<u> </u>	I	
Splined shaft DIN 5490						00	()	90	130	190	200	, 7		
Splined shaft SAE						•	-	•	0	-	-	S		
						-	0	-	-	•	•	T		
Mounting flange									•					
SAE 4-hole (SAE-diesel motor fl	ange on d	demar	nd)			•	0	•	0	•	•	D		
Service line connections	-					I		1		_		L	I	
Pressure and suction port SAE on si	ide,					-		-	-	-	-			
opposite side (1 suction port, 2 pres	ssure ports	;)					0		0			24		
Through drive														
dun 	flan	ge					0		0			NOO		
SAE A (N 5/8"-9T 16/32 DP)		E A, 2	-hole			•	0	•		•	•	K01		
SAE B (N 7/8"-13T 16/32 DP)	SAE	B, 2	-hole			-	0	•	0	•	•	K02		
SAE B-B (N 1"-15T 16/32 DP)	SAE	E B, 2	-hole			-	0	•	0	•	•	K04		
SAE C (N 1 1/4"-14T 12/24 DP)	SAE	C, 2	-hole			-	-	•	0	•	•	K07		
SAE U-U (N 1 1/2"-1/1 12/24 DI SAE D (N 1 3/4"-13T 8/16 DP)	-) SAE	= C, 2 = □ 4	-nole			-	-	-	0			K24		
	UAL	- 0, +	1010							-			l	

Technical Data

Fluid

We request that before starting a project detailed information about the choice of pressure fluids and application conditions are taken from our catalogue sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistant hydraulic fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet). The operation with HFA-, HFB- and HFC- hydraulic fluids requires additional special measures.

Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

 v_{opt} = operating viscosity 16...36 mm²/s

referred to tank temperature (open circuit).

Viscosity limits

The limiting values for viscosity are as follows:

size 60

 $v_{min} = 10 \text{ mm}^2/\text{s}$

short term at a max. permissible leakage oil temp. of t_{max} = 90°C ν_{max} = 1000 mm²/s,

short term on cold start ($t_{min} = -25^{\circ}C$)

sizes 75...260

 $v_{min} = 5 \text{ mm}^2/\text{s},$

short term at a max. permissible temperature of $t_{max} = 115^{\circ}C$ $v_{max} = 1600 \text{ mm}^2/\text{s}$, short term on cold start ($t_{min} = -40^{\circ}C$)

Please note that the max. fluid temperature is also not exceeded in certain areas (for instance bearing area).

At temperatures of -25°C up to -40°C special measures may be required for certain installation positions. Please contact us for further information.

Selection diagram

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (v_{opt}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of X°C tank temperature is 60°C. Within the operating viscosity range (v_{opt} shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and pump speed and is always higher than the tank temperature. However, at no point in the circuit may the temperature exceed 115°C for sizes 75...260 and 90°C for size 60.

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult us.

Filtration

The finer the filtration the better the achieved purity grade of the pressure fluid and the longer the life of the axial piston unit. To ensure the functioning of the axial piston unit a minimum purity grade of:

18/15 to ISO/DIS 4406 is necessary.

In this case we recommend, depending on system and application filter element $\beta_{_{20}}\!\ge$ 100 for the A20VO.

With the rising differential pressure at the filter element the β -value must not decrease.

At very high temperatures of the hydraulic fluid (90°C to max. 115°C, not permissible for size 60!) at least cleanless class

8 to NAS 1638

5 to SAE

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

Operating pressure range – inlet

Absolute pressure at port S (suction port)

Design without charge pump

P _{abs min} P _{abs max}		0,8 bar 30 bar
Design <i>with</i>	charge pump	
p _{abs min}		0,6 bar
P _{abs max} ———		2 Jai

Operating pressure range – outlet

Pressure at port A or B

р_L

p _N = 250 bar
p _{max} = 315 bar
p _N = 350 bar
p _{max} = 400 bar

Case drain pressure

Permissible case drain pressure at ports T_1 or T_2

_ 2 bar abs.

A leakage line from one of the four ports T to the tank is necessary.

Technical Data

Mounting position

With the drive shaft to horizontal position; alternative mounting positions are possible, please consult us. The pump housing must be filled with fluid during commissioning and during normal operation. For extensive information on the installation position, please read our data sheet RE 90270.

Table of values (theoretical values, without considering η_{mh} and η_{v} ; values rounded)

Size		without	charge pump	60	75	95	130			
		<i>with</i> ch	arge pump					130	190	260
Displacement		$V_{g max}$	cm ³	60	74	93,8	130	130	192,7	260
(per rotary group)		$V_{g min}$	cm ³	0	0	0	0	0	0	0
Max. speed 1)	at V _{g max}	n _{max}	rpm	2700	2550	2350	2100	2500	2500	2300
Max. perm. speed (speed limit) with increased inlet pressure p_{abs} at suction port S or at $V_g \leq V_{g max}$ ($q_V \leq q_{V max}$) (see diagram below)		n _{max zul.}	rpm	3200	3000	2780	2500	2500	2500	2300
Max. output flow at n _{max} (V _{g max}) ²)		$q_{_{Vmax}}$	L/min	2x157	2x183	2x214	2x265	2x315	2x467	2x580
Max. drive power at $q_{V max}$ ($\Delta p = 350$ bar)		P_{max}	kW	135	220	258	318	380	560	696
Perm torque	continuous duty ($\Delta p = 350$ bar)	T_N	Nm	477	824	1044	1446	1446	2145	2894
at $V_{g max}$	max. perm. intermit. ($\Delta p = 400$ bar)	T _{max}	Nm	601	942	1193	1652	1652	2451	3307
Moment of inertia about drive axis		J	kgm ²	0,0113	0,0230	0,0346	0,0636	0,0674		
Weight (approx.)		т	kg	44						

¹) ¹) The values shown are valid for an absolute pressure (p_{abs}) of 1 bar for design without charge pump and of 0,8 bar for design with charge pump at the suction inlet S and when operated on mineral oil.

2) 3 % volumetric loss included

³) $\Delta p = 250$ bar (continuous duty) and 315 bar (intermittant)

Calculation of size

Output flow (per rotary group)	$q_v = \frac{V_g \cdot n \cdot \eta_v}{1000}$	in L/min
Drive torque	$T = \frac{1,59}{100 \cdot \eta_{mh}} \cdot (V_{g,1} \cdot \Delta p_1 + V_{g,2} \cdot \Delta p_2)$	in Nm
Drive power	$P = \frac{2\pi \cdot T \cdot n}{60000} = \frac{(q_{v_1} \cdot \Delta p_1 + q_{v_2} \cdot \Delta p_2)}{600 \cdot \eta_t}$	in kW
V = geom, displac	ement per rev, in cm ³	

in rpm

g	geenn alepiaeennen per ren	
Δp	= differential pressure	in bar

- n = speed
- η_v = volumetric efficiency
- η_{mh} = mech-hyd. efficiency
- $\boldsymbol{\eta}_{t} \quad \text{= overall efficiency } (\boldsymbol{\eta}_{t} \!=\! \boldsymbol{\eta}_{v} \bullet \boldsymbol{\eta}_{\text{mh}})$

Max. perm. speed n_{max} with increased inlet pressure p_{abs} at suction port S or at $V_g \leq V_{g\,max}$ (Design without charge pump)

Note: Max. perm. speed n_{max perm.} (speed limit)

Unit Dimensions, Size 60 Electronic pressure, flow and power control EDP 388 45° 117 <u>4</u>50 L1 L3 **T** 128 Ð \oplus 87 <u>Z</u> \$ 14.5 H 210,5 114,5 434 7 168 90 90 141 X View Z 381 304 æ 40 L2 L4 M10; 16 deep (1) 106,5 D Ø127 (SAE-C) View Y View X rΒ Ð \$ 69 8 6 9 12,7 15 Y 52,4 _50,8 M12; 20 deep M10; 17 deep

Shaft ends

S

Splined shaft SAE C, 1¹/₄" 30° pressure angle, 14T-12/24 pitch flat root, side fit tolerance class 5, ANSI B92.1a/1976

Connections

B ₁ , B ₂	Service line ports	SAE 1" standardpressure series
S	Suction port	SAE 2 1/2" standardpressure series
$L_{1,}L_{2,}L_{3,}L_{4}$	Air bleed, tank	7/8-14UNF-2B

Unit Dimensions, Size 75 (without impeller) In preparation

Shaft ends

Ζ

Splined shaft, DIN 5480 W 45x2x30x21x9g

S Splined shaft SAE D, 1³/₄" pressure angle 30°, 13T-8/16 pitch flat root, side fit tolerance class 5, ANSI B92.1a/1976

Connections

B ₁ , B ₂	Service line ports	SAE 1" 420 bar (6000 psi) high pressure series
S	Suction port	SAE 3 1/2" 35 bar (500 psi) standard series
T ₁	Air bleed, tank	M26x1,5; 14 deep
T ₂	Air bleed, tank	M26x1,5; 14 deep
M_1, M_2	Gauge point positioning chamber	M12x1,5; 12 deep
M_{B1}, M_{B2}	Gauge point for pressure port	M12x1,5; 12 deep
Х	Port for ∆p-control	M14x1,5; 12 deep
R	Air bleed, Oil drain	M26x1,5; 14 deep
G	Control pressure port at design with stroke limiter (H1) wit (in other case is port "G" closed)	M14x1,5; 12 deep h fitting GE10 - PLM

Unit Dimensions, Size 130 (without impeller)

with through drive K01 (flange + hub: SAE A)

Splined shaft, DIN 5480 W 50x2x30x24x9g

pressure angle 30°, 13T-8/16 pitch flat root, side fit tolerance class 5, ANSI B92.1a/1976 R 2,5 ø106

36

67

5/8-11 UNC-2B

- Suction port (without impeller)
- T₁ Air bleed, tank

S

Х

R

G

- T_2 Air bleed, tank
- M₁, M₂ Gauge point positioning chamber M12x1,5; 12 deep
- M_{B1}, M_{B2}Gauge point for pressure port M12x1,5; 12 deep
 - Port for Δp -control
 - Air bleed, Oil drain
 - Control pressure port M14x1,5; 12 deep at design with stroke limiter (H1) with fitting GE10 - PLM (in other case is port "G" closed)

SAE 3 1/2" 35 bar (500 psi)

standard series

M26x1,5; 14 deep

M26x1,5; 14 deep

M14x1,5; 12 deep

M26x1,5; 14 deep

Prior to finalising your design, please obtain a certified drawing.

Ζ

Splined shaft, DIN 5480 W 50x2x30x24x9g

Splined shaft SAE F, 2" pressure angle 30°, 15T-8/16 pitch flat root, side fit tolerance class 5, ANSI B92.1a/1976

Service line ports	SAE 1 1/2" 420 bar (6000 psi) high pressure series
Suction port	
Suction port	SAE 5" 35 bar (500 psi) standard series
Air bleed, tank	M33x2; 18 deep
Air bleed, tank	M33x2; 18 deep
Port for Δp -control	M14x1,5; 12 deep
Gauge point for pressure port	M12x1,5; 12 deep
Gauge point positioning chamber	M12x1,5; 12 deep
Air bleed, Oil drain	M33x2; 16 deep
Control pressure port at design with stroke limiter (H1) with fit (in other case is port "G" closed)	M14x1,5; 12 deep ting GE10 - PLM
	Gauge point for pressure port Gauge point positioning chamber Air bleed, Oil drain Control pressure port at design with stroke limiter (H1) with fit (in other case is port "G" closed)

ontrol pressure port at design with stroke limiter (H1) with fitting GE10 - PLM (in other case is port "G" closed)

10/12 Brueninghaus Hydromatik

58

80

Brueninghaus Hydromatik GmbH, Plant Elchingen, Glockeraustraße 2, D–89275 Elchingen, Tel. (07308) 820, Telefax (07308) 7274 Plant Horb, An den Kelterwiesen 14, D–72160 Horb, Tel. (07451) 920, Telefax (07451) 8221

The specified data is for product description purposes only and may not be deemed to be guaranteed unless expressly confirmed in the contract. All rights reserved – Subject to revision